We have discussed the following.

- 1. Suppose f has essential singularity at 0, then for all $c \in \mathbb{C}, \epsilon > 0$, there exists $\delta, \alpha \in B(c, \epsilon)$ such that $f(z) = \alpha$ has infinity many solutions.
- 2. Suppose f is of moderate decrease, $f = \sum_{n=0}^{\infty} a_n z^n$ and \hat{f} is compactly supported on [-M, M], then

$$a_n = \frac{(2\pi i)^n}{n!} \int_{-M}^M \hat{f}(t) t^n dt.$$

Hence, $\limsup[|a_n|n!]^{1/n} \le 2\pi M$.

Conversely, if the inequality is true, then f is a entire function and $\forall \epsilon > 0, \exists A \text{ such that}$

$$|f| \le A e^{2\pi (M+\epsilon)|z|}.$$

- 3. If f is analytic on $\{z : Im(z) \in [-1,1]\}$, and $f(x) \in \mathbb{R}$ for all $x \in [0,1]$. Then $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$.
- 4. (a) Find a entire function so that it has simple zeros precisely at $\log n$ where $n \in \mathbb{N}$.
 - (b) Can f constructed at (a) have finite order?
 - (c) Find all f of finite order so that $f(\log n) = n$ for all $n \in \mathbb{N}$.
- 5. Find the Hadamard factorization of $\cosh z 1$.